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A holonomic mechanical system with k degrees of freedom is considered, its state being characterized byn 2 k defming coordinates, 
p < k PoincarC parameters [l] and k -p Chetayev parameters [2]. In these variables, generalized Routh equations are introduced 
and expressions are given for the integral variational principles of Hamilton-Ostrogradskii and Hamilton (the third form), as 
well as HSlder’s principle and the Lagrange and Jacobi versions of the principle of least action. 0 2003 Elsevier Science Ltd. 
All rights reserved. 

1. THE ROUTH FUNCTION 

Suppose a mechanical system is constrained by smooth holonomic constraints and its position in space 
at a time c is defined by real not necessarily independent variablesxi (i = 1, . . . , n). We define a virtual 
displacement of the system by a certain intransitive k-member group of infinitesimal operators [l, 21 

x, =khaiax,, a= I,...,k 

Throughout this paper repeated indices represent summation. 
The group of virtual displacements is defined by its structural coefficients c& 

[Xa,Xp]~XaXD-XpXa=c&Xj, a,p,i=l,...,k (1.1) 

The variations of a continuous differentiable function f(t, xl, .., , x,) under virtual and actual 
displacements are defined by the relations 

Sf =o,X,f, df =(aflat+q,X,f)dt (1.2) 

respectively, it being assumed that the operator alat commutes with the group of virtual displacements 
& 

piat,x,j=o, a=1 ,..., k 

The quantities o, in (1.2) are independent virtual displacement parameters, and rla are independent 
actual displacement parameters, introduced by Poincart (11 and satisfying the relations 

SI& =dq/dt-c&o,p,, a,p,i=l,..., k (1.3) 

in the case when the operators d and 6 commute, d6 = 6d. 
We shall assume that the kinetic energy of the system is a positive-definite quadratic form 

T(X,rl)=Kaij(X)llirlj’ i,j=l,..., k (1.4) 

Instead of part of the Poincare parameters n,, we will introduce new variables - the Chetayev 
parameters [2] 

y, =aTIaq, =U,qi, s=p+l,...,k, O<p<k (1.5) 

and, using these equalities, express the parameters r\, as follows [3] 
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~s=bsrYr- 'Ys j l] j ,  r , s = p + l  ..... k, j = l  ..... p (1.6) 

where b,s = A~/D,  D = det(O2T/Ol)rO'qs)~ r=p+ l :/: O, ~sj = bsrarj andAr~ denotes the cofactor of an element 
a,s of the determinant D. Substituting Eqs (1.6) into (1.4) we obtain the following expression for the 
kinetic energy of the system in terms of Poincar6 and Chetayev variables 

T* (x, 11, y) = ~ a#~irl j + ~ b~syry, (1.7) 

where 

aiy =aiy -brsaryasi, i , j =  l ..... p; r , s=  p +  l ..... k 

Let us assume that the system is subject to both potential forces, with force function U(t, xl . . . . .  xn), 
and non-potential generalized forces Q~ = Fv" X@v, where Fv is the non-potential force applied to a 
point mass with radius vector rv (v = 1 . . . . .  N). The Lagrangian will be denoted by 

L(t,x, 'q) = T(x, 'q) + U(t ,x)  

We define the Routh function by 

R(t ,x , 'q ,y)= L ( t , x , ~ ) - r l s y  s, s =  p +  l .... ,k (1.8) 

where all the quantities ~s on the right are expressed in terms of vs by formulae (1.6), so that 

R(t, x,'q, y) = ~ a~Tli'q j + "~sj'qjYs - )62 brsYrYs + U(t, x i) (1.9) 

Comparing the variations of both sides of (1.8), we obtain the relations 

OR 0L OR 
XctR=XtxL' ~r  ~T~r, Oy s -~ s ,  a = l  ..... k, r = l  .....  p, s = p + l  ..... k (1.10) 

which hold because of the independence of the initial values of the coordinates and the velocities at 
the initial time, for which we are free to choose that considered [4]. 

2. DERIVATION OF THE INTEGRAL VARIATIONAL PRINCIPLES 
OF MECHANICS.  SYNCHRONOUS VARIATION 

Bearing equality (1.8) in mind and noting that the work done by the non-potential forces in the virtual 
displacements is A = c0aQ a, we conclude that the Hamilton-Ostrogradskii principle [3] takes the 
following form in terms of Poincar6 and Chetayev variables 

• t l  

S [8(R+~sYs)+°aaQa ]dt=O; t % = 0  for t=to ,  t l ; o t = l  ..... k (2.1) 
t o  

This principle is a necessary and sufficient condition for actual motion of the mechanical system under 
the action of the applied forces. The actual motion (the "direct route") is assumed to be compared 
with the varied motions (the "indirect routes"), the configurations of the system being the same for a l l  
motions, at both the initial time t o and the final time tl, which are chosen arbitrarily. Condition (2.1) 
leads to the equation 

,'i ~R ]dt=O 
which, in view of relations (1.3), may be reduced via integration by parts to the form 

"to to dt O$~r r 
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The expression outside the integral vanishes by virtue of the conditions at the ends. Assuming that 
the quantities c0,, c% and 5y~ are arbitrary and independent in the interval (to, tl) and taking expressions 
(1.5) into consideration, we obtain the generalized Routh equations of motion in Poincar6 and Chetayev 
variables 

d og OR (¢~.¢i _c~ OR)( 5 ~ ~R].I. XrR.t. Qr 
: t<<,..<< dt Orl r Orl~ ) 

ey,= DR( DR) ( 6 6 DR %~y~J+Ys[C~ri~-%ll+X,R+Q,, 
tit i~tl[~ [ ca f f la -  Oy, ) 

r, ct,[~ = 1 ..... p, s,T,8= p + l  ..... k 

DR 
rls= ~Ys 

(2.2) 

I fp = k (p = 0), these equations become the Poincar6 (Chetayev) equations. 
In the case when the Routh function is not explicitly dependent on the time t and all the non-potential 

forces vanish, a i  = 0 (i = 1 . . . .  , k), Eqs (2.2) have an energy integral [3] 

D R _ R = T  ° - U = h = c o n s t ,  r = l  ..... p 
~r Orb 

(2.3) 

Chetayev [2] introduced the important concept of cyclic displacements in the case that there are no 
non-potential forces. Displacements Xa (ct = p + 1, . . . ,  k) are known as cyclic displacements if they 
satisfy the conditions 

I) XaL=O, 2 )[XaX~J=O,  13=1 ..... k 

By conditions 2, all the structural coefficients vanish, c~  = 0, if the subscript c~ or [3 equals one of 
the numbersp + 1, . . . ,  k. In that case, by relations (1.10), the second group of Eqs (2.2) yields first 
integrals 

Ys = cs = const, s = p + 1 ..... k (2.4) 

and the first group of Eqs (2.2) becomes [2] 

6 XrR+Qr,Ct, ~, r = l  ..... p, ~ = p + l  ..... k d DR _ I~ D R  + Carl]~xcs + 
dt ~Iqr -Carl]a ~rl[~ (2.5) 

After integration of these equations for the non-cyclic displacements, the Poincar6 parameters 
lqs (s = p + 1 . . . .  , k) are defined by the relations 

DR 
rls = -~- - - ,  R = R(t, x i , rb ,c  s) 

ocs 

When these are no non-potential forces, i.e. when Qi = 0 (i = 1, . . . ,  k), relations (2.1) imply the 
third form of Hamilton's principle in Poincar6 and Chetayev variables 

tl 

8 s (R+rhys)dt=O; to i=0 for t=to, t l ;  s = p + l  ..... k, i l l  . . . . .  k (2.6) 
tO 

unlike the first form in Poincar6 variables and the second form in Chetayev variables 

tl t I 

f L(t, x, 1])dt = 0 and 8 S [Ysrls - H(t, x, y)]dt = 0; toi = 0 for t = t 0, fi 
to t 0 

(2.7) 

where the Hamiltonian is 

H(t,x,y)=Ysqs-L(t,x,~), s=l ..... k 
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The third form (2.6) of Hamilton's principle occupies an intermediate position between the first and 
second forms (2.7) of the principle. This form of the principle is significant in its own right, because of 
the assumption that the variations 8ys are arbitrary and independent of co/and 8~r inside the interval 
(to, tl). One should also bear in mind that in the general case the comparison curves may not satisfy 
the relations Ys = OL/Or~. 

3. D E R I V A T I O N  OF THE I N T E G R A L  V A R I A T I O N A L  P R I N C I P L E S  
OF M E C H A N I C S .  A S Y N C H R O N O U S  VARIATION 

In the variational principles (2.1), (2.6) and (2.7) described above, we considered synchronous variations: 
a point P on the direct path at time t was associated with a point P' on the indirect path at the same 
instant of time. We shall now consider asynchronous variation, when the point Pi with coordinate xi on 
an actual trajectory at time t is associated with the point P' with coordinates xi + ~ i  on the varied 
trajectory at the time t + St. The variations 6xi and 8t are assumed to be functions of class C2 and the 
relations between the Cartesian and defining coordinates of the system are independent of time. In 
asynchronous variation the operators d and 8 do not commute, and instead of the equalities d8 = 8d 
and (1.3) we have the formulae 

.... d do~i i d 8 dxi = d s x . - J q  St, ~Jrli= ~l t - -c~c%rl[~-r l i  8t, cx, f~, i = l  .. . . .  k (3.1) 
dt dt 

Using these relations and integration by parts, from the general equation of dynamics [4] we obtain, 
instead of (2.1), H61der's principle [5] 

I 8(R+rlsys)+ "qr'~-~+rlsYs 8t---f f~St+coiQ i t=O; o3i=0 for t = t o , t  I 
to 

(3.2) 

if the parameters c0i (i = 1 . . . .  , k) are virtual displacements at each instant of time, vanishing at times 
t o and tl, whereas the function 8t does not necessarily vanish at t = to, tl. 

It is easily seen that 

~R 
rlr~-----+rlsys=2T*, r = l  ..... p, s = p + l  ..... k (3.3) 

Mr 

by means of which (3.2) can be represented by the relation 

I 8(R+rl~y,)+2r" - 
] 

6' _ _  6' + coiQ, ,dt  = 0; 
to of " j 

o) i -~ 0 for t = t 0,t I (3.4) 

which, like (3.2), expresses H61der's principle in terms of Poincar6 and Chetayev variables: if one 
compares the actual motion of a material system with a slightly different motion, in which the initial 
and final states remain unvaried and the displacements from each state of the actual motion to the 
corresponding state of the varied motion are virtual, then relations (3.2) and (3.4) hold. 

Here the variation may be made even more specific by using the first or second mode of variation 
prescribed by H/51der [5]. 

1. In the case of synchronous variations, when the corresponding positions of the actual and varied 
motions are traversed simultaneously, that is, 8t - 0, Eqs (3.2) and (3.4) take the form of the 
Hamilton-Ostrogradskii principle (2.1) and, if also Qi = 0 (i = 1 . . . . .  k), Hamilton's principle (2.6). 

2. In the case of asynchronous variations and no force functions, that is, when U(t, x) = 0, it follows 
from (1.7) and (1.8) that 

. ~R 0 (3.5) R(x,'q,y)+ ~sy s = T (x,'q,y), -5-7= 

Set 

ST* = (oiQi, i = 1 ..... k (3.6) 
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that is, we are requiring the difference between the kinetic energies for the corresponding states of 
both motions to equal the work that would be performed by the actual forces in the displacements 
relating corresponding positions. This determines in what way the system goes through the continuous 
sequence of varied positions. For this special mode of variations, Eqs (3.4)--(3.6) lead to the relation 

t I t I 

I 2(ST*dt+T*dSt)=~l  2T*dt=O; o) i =0 for t=to,  fi (3.7) 
t o t o 

This is the principle of least action, derived by H61der, in its extended form. The more restricted 
form of the principle of least action will be worked out in the next two sections. 

4. LAGRANGE'S  VERSION OF THE PRINCIPLE OF LEAST ACTION 

Let us assume that the Routh function is not explicitly dependent on time and that the non-potential 
forces vanish, Qi -- 0, so that energy integral (2.3) exists. The mechanical system, left to itself, may choose 
its motions from motions with a given total energy h, which makes it possible to limit the set of 
comparable trajectories by condition (2.3) [4]. 

Under the conditions OR/Ot = O, Qi = 0 (i = 1 . . . . .  k), H61der's principle (3.4) becomes 

J 8(R+rlsys)+2T ° 5t =0; ~ i = 0  for t=to ,h;  s = p + l  ..... k 
to 

(4.1) 

Using the relation 

R = rl,3R/3rl, - h (4.2) 

which follows from energy integral (2.3), we can express Eq. (4.1) in the form 

t l  

which implies the Lagrange version of the principle of least action in Poincar6 and Chetayev variables 

t l  

8J 2T*dt=O, 8h=0; coi=O for t=to,tl;  i=1 ..... k (4.3) 
to 

The actual motion of a conservative holonomic system between two given configurations differs from 
the kinematically possible motions which take place between the same two configurations, with the energy 

tl 
h as the actual motion, in that the total variation of the Lagrange action ~ 2T* dt for the actual motion 

to 

has a stationary value. 
We note that, thanks to the existence of the energy integral, the time taken by the system to go from 

one position to another depends on the path and is determined by it, so that the upper limit tl of the 
integral in (4.3) will be variable, and the variation of the integral (4.3) must be total. 

Obviously, the principle (4.3) is analogous to its form in terms of Poincar6 variables (T* = T). 
The principle of least action, like Hamilton's principle, expresses a necessary and sufficient condition 

for actual motion, and the equations of motion may be derived from it. In fact, let us consider the 
Lagrangian with multiplier )~ for the conditional variational problem (4.3) 

F = 2T* + ~.(T* - U -  h) 

The transversality condition for the variable end at the upper limit tl of the integral 

~F ~F 
F - r l ,  x-r---ns-r---=0,  r = l  ..... p; s = p + l  ..... k 

Orlr otis 

yields the equality -2(1 +~.)T* = 0, ~. =-1, and, taking (1.8) into account, we obtain 
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F= R +~sYs + h 

Consequently, Euler's equations for the variational problem with integrand F, in terms of Poincar6 
and Chetayev variables, have the form of the equations of motion (2.2) for ai = 0 (i = 1, ... , k). 

Note that if (4.2) is used to replace the term lq)R/Olqr in HOlder's principle (3.2) by R + h, then, 
conditional upon OR/Ot = O, Qi = 0, we obtain 

that is, 

~(R+rlsYs)+(R+rlsYs +h) St =0; 
to 

tl t tl 
~S (R+rlsYs)dt=-h8 ; 

to to 

0 i=O for t=to, t  I 

o i=O for t=to, h 

This yields the generalized Hamilton principle [6] in Poincar6 and Chetayev variables 

tl 
gI (R+~lsY~+h)dt=O; mi=O for t=to,g 

to 
(4.4) 

5. JACOBI'S VERSION OF THE PRINCIPLE OF LEAST ACTION 

Jacobi [7] eliminated the time t from Lagrange's principle by using the energy integral, and reduced it 
to space elements, thereby giving the principle of least action a geometrical aspect [4]. In addition, he 
showed that the integral does not reach a minimum between any two positions of the system, but only 
when the initial and final position are sufficiently close together. 

Let us choose some new independent variable "c in such a way that its values lie between time- 
independent limits % and Xl. As x one might take, e.g., one of the coordinates xi which varies 
monotonically with t in the interval under consideration [6, 7]. When the system is in motion, the 
coordinates xi (i = 1 . . . . .  n) will be certain functions of the variables x; we denote their derivatives 
with respect to that variable by x~--- dxi/dx. We denote the Poincar6 parameters corresponding to the 
velocities x~by r]s and, as in the treatment of (1.4), we consider the quadratic form 

l"(x, ~) = ~ aijrli~) j 

We then have 

at j (5.1) 

Bearing in mind that T = T*, we write the principle (4.3) in Poincar6 variables xi, fls in the form 

8~ 2 l"(U+h)dx=O; ~h=0; toi=0 for ~=x0,'rl; i=1 ..... k (5.2) 
'~0 

This equality is Jacobi version of the principle of least action. 
In actual motion, the Jacobi's action takes a stationary value compared with its values for infinitely 

close adjacent motions that take the system from the same initial position to the same final position, 
with the first of Eqs (5.1) observed and the same value of the constant h as in the actual motion. 

Thus, the Jacobi principle reduces the problem of determining the trajectory of the representative 
point inx-space to a problem of the variational calculus (5.2) with fixed endpoints. The velocity of motion 
of the representative point along the trajectory is found from the energy integral. 

In conclusion, let us express the Jacobi principle in terms of Poincar6 and Chetayev variables. 
Comparing the principle (5.2) with the first form of Hamilton's principle (2.7), we see that the integrand 
in (5.2) may be taken as a new Lagrangian [,(x~, flj) with independent variable t and velocities x~ [7]. 
By analogy with the function (1.8), we introduce the Routh function 
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R(Xi, ~r, ~ )  = Z(xi' ~j)  - ~sYs, L(xi' ~j)  = 2 ~ ( U  + h) (5.3) 

where 

oL of 

Comparing the variations of both sides of Eq. (5.3), we find relations similar to (1.10). As a result 
we obtain an expression for the Jacobi principle in Poincar6 and Chetayev variables 

~ S [R(xi'flr'Ys)+llsYs ]d'~=O; 8 h = 0 ;  ~ i = 0  for X=Xo,X l (5.4) 
• c 0 

It is readily seen that the equations of the extremals of the variational problem (5.4), when (5.1) is 
used to return to the independent variable t, take the form of the equations of motion (2.2) with 
Qi = O ( i =  1 . . . .  ,n) .  
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